

Pixel Fast-OR, Part 1: "Simulation"¹⁾

Jan Conrad (CERN)

 It would be more proper to call it a "(re-)construction"

Fast-OR (FO) for the simple minded

- half-stave half-stave 5 Chips Si sensor 1 ladder 193 mm long
- Basic idea:
 - every pixel read-out chip produces a signal if >= 1 pixels fire
 - 1200 chips (400 inner layer, 800 in the outer layer)
 - \rightarrow 1200 (FO) signals
 - 1200 FO signals can be combined to form

Input to CTP

a Pixel FO Trigger Input

Roughly Decreasing Urnency

The Pixel Fast-OR: possible applications & their status

- Low multiplicity minimum bias trigger in pp
 - Simulation-study is done (I will concentrate on this study in the present talk)
- High multiplicity trigger in central region (in pp)
 - simulation-study needs to be done
- "Centrality" trigger in Heavy Ions collisions
 - If possible, then for low multiplicity simulation-study needs to be done
- Trigger for ultra-peripheral Heavy Ion collisions
 - simulation study needs to be done

Let me just mention that we have a large amount of data with Fast-OR trigger from the combined ITS beam test in November, 2004

Pixel FO as MB trigger in pp

- The question is:
 - how to combine the 1200 FO signals best to
 - pick up as large fraction as possible of (low multiplicity) proton-proton events (signal)
 - get rid of as large fraction of beam- residual gas/halo events (background) as possible

Signal: the PDC 04 pp data

- <u>Sqrt(s) = 14 TeV</u>
- <u>B = 0.5 T</u>
- <u>~ 10k events</u>

Background: beam – gas/halo

 Simulation: HIJING generates random pz beam-gas:

-20 m < z_{vertex} < 20 m

beam-halo: abs(z_{vertex}) > 20 m (A. Morsch)

- p-O,p-H,p-He, p-C generated
- Results presented are for p-O
- no significant difference found for for the other gases
- ~ 5k events

FO: considered algorithms

- OR of all incoming FO signals (simplest, see TDR)
 → GLOBAL OR
- Require one FO signal in each layer of the SPD
 → LAYER COINC
- Require correlation in ϕ (see next slides) \rightarrow SECTOR COINC.
 - \rightarrow HALF SECTOR COINC.
 - \rightarrow SLIDING WINDOW (2 different)
- Require correlation in z (see next slides)
 → VERTEX (3 different)

z- correlation trigger

z-correlation then typically combined with ϕ -correlation

Results: efficiencies p-p

TRIGGER	Inelastic	Single Diffractive	Double Diffractive	Non Diffractive
<u>GLOBAL FAST</u> <u>OR</u>	0.88	0.60	0.70	0.99
LAYER COINC.	0.86	0.57	0.62	0.99
<u>SECTOR</u>	0.86	0.56	0.60	0.98
HALF SECTOR	0.85	0.55	0.59	0.98
<u>SLIDING</u> WINDOW	0.86	0.56	0.61	0.98
<u>VERTEX (SW)</u>	0.85	0.55	0.58	0.98

High efficiency for inelastic events, close to 100 % for non-diffractive part.

Low multiplicities

 $|\eta| < 1.5$

TRIGGER	Efficiency
	1 <= n < = 3
VZERO.AND	0.71
VZERO.OR	0.99
GLOBAL FO	1.
LAYER COINC.	0.98
SECTOR	0.96
HALFSECTOR	0.95
SLIDING WINDOW	0.97
VERTEX	0.94

Very efficient for low multiplicity events

Efficiencies: background

<u>VERTEX</u>	0.40	0.38
<u>SLIDING</u> <u>WINDOW</u>	0.41	0.39
HALFSECTOR	0.39	0.38
<u>SECTOR</u>	0.40	0.38
LAYER COINC	0.42	0.39
<u>GLOBAL FO</u>	0.46	0.41
TRIGGER	beam gas	beam halo
TDICCED	Efficioney	Efficiency

..... efficient to pick up beam-gas background

Random FO signals

Upper cut on FO occupancy ?

Multiplicity vs. FO occupancy in pp

n_{FO} < 50

ok if in or with VZERO.AND !!!!

But we have better ways to get rid of the beam background

progress report 28. Nov.05

Conrad (CERN)

TRIGGER	Efficiency BeamGas	Efficiency Beam Halo
GLOBAL FAST OR	0.46	0.41
Layer COINC	0.42	0.39
LAYER COINC UPPER CUT	0.07	0.03

TRIGGER	Efficiency 1 <= n <= 3
LAY/UPPER CUT	0.98

FO in combination with VZERO

- <u>The Pixel FO was part of a more general study to evaluate</u> <u>possible MB triggers for proton-proton running, in</u> <u>particular combinations with the VZERO trigger</u>
- J.C, G. Contreras, C. Jørgensen, ALICE-INT-2005-025 and PPR VII, ch. 6.1
 - ... you will find all I presented today and more ...

http://agenda.cern.ch/fullAgenda.php?ida=a053593 (pp meeting Juli)
http://agenda.cern.ch/fullAgenda.php?ida=a056134 (pp meeting Oct)

Here only some examples from PPR

MB triggers as discussed in PPR

MB1: (GLOB.FO) or (VZERO.OR) and (notBG)

preferred, but careful with 4 bunch crossing integration of GLOB.FO
(worst for background rejection)

 MB2: (GLOB.FO) and (VZERO.OR) and (notBG)

no problem anymore regarding the 4bunch crossing integration

 MB3: (GLOB.FO) and (VZERO.AND) and (notBG)

> •The most stringent, best for background •rejection

<u>Process</u>	<u>MB1</u>	<u>MB2</u>	<u>MB3</u>
<u>Non</u> diffractiv <u>e</u>	1	0.99	0.97
<u>Single</u> <u>diffractiv</u> <u>e</u>	0.74	0.60	0.38
<u>Double</u> <u>diffractiv</u> <u>e</u>	0.88	0.69	0.46
<u>All</u> inelastic	0.94	0.88	0.79
<u>Beam Gas</u>	0.01	0.02	0.00*
<u>Beam</u> <u>Halo</u>	0.02	0.00 *	0.00*

Regarding bunch crossing id:

progress report 28. Nov.05 Conrad (CERN)

see Karels talk on October p-p meeting

Fast-OR as MB trigger in pp III

Short look at rates (including MB 1 trigger) $L_0 = 3 \cdot 10^{30}$

Source	pp running (25 ns) Rate [kHz]	pp running (75 ns) Rate [kHz]	Pilot runs (156 bunch) Rate [kHz]
<u>Proton-</u> proton	200 (188)	200 (188)	10 (9.4)
<u>beam gas</u>	5 (0.4)	1 (0.08)	0.05 (4e-3)
<u>beam halo</u>	100 (2.3)	17 (0.4)	1 (0.023)

Assumptions (conservative, I think):

$$I_{\text{pilot}}/I_{\text{nominal}} = 0.02, \ I_{75\text{ns}}/I_{\text{nominal}} = 0.3, \ R_{\text{beamgas,nom}} = 120 \ \text{Hz/m}$$
$$L_{\text{pilot}}/L_{\text{nominal}} = 0.05, \ L_{\text{nominal}} = L_{75\text{ns}} \ R_{\text{beam halo,nom}} \text{ see figure slide } 22,$$
$$N_{\text{pilot},75\text{ns}}/N_{\text{nominal}} = 1/2$$

Conclusions part 1

- <u>The Fast-OR as minimum bias trigger in proton proton</u> <u>collisions has been studied</u>
- <u>The Fast-OR has good efficiency for inelastic events</u> especially at low multiplicity
- Correlation triggers in (z, φ) do not help to get rid of background \rightarrow go for an OR of all Fast-OR channels and combine with triggers which can veto against background
- <u>Simulation studies for the other possible applications</u> need to be done

Ultra peripheral collisions

- <u>Signal:</u>
 - Light vector mesons
 - Heavy vector mesons (Quarkonia: J/Ψ,Upsilon)
 - · YY
 - Y-parton

\rightarrow need to be interfaced to AliROOT (NEW: yy exists)

- Backgrounds:
 - two photon interactions
 - peripheral A-A
 - Cosmic muons (negligible for SPD)
 - yA- incoherent interactions
- Possible trigger, which could be examined:
 - (2 < nFO < 8) and not.VZERO ?
 - Topological triggers (require back to back tracks in transverse plane)

For more information on physics and generators: Joakim Nystrand (Bergen)

Trigger for ultraperipheral HI

TAR: Low multiplicity and zero energy t Zero Degree Calorimeter (ZDC)

Light vector meson production

End view

Fast-OR: centrality trigger

High multiplicity trigger in central region

- •Make cut in FO, see if you can select different impact parameters
- \rightarrow For high multiplicities would need
- \rightarrow a "multiplicity trigger" ?
- \rightarrow but can help at lower
- \rightarrow multiplicities
- \rightarrow
- \rightarrow Same type of optimisation as in pp,
- \rightarrow but has to be redone:
- \rightarrow new backgrounds ?

Interlude 1: trigger bias in multiplicity reconstruction ?

