
The PIT FED Server
Preliminary User Manual

Table of Contents
The PIT FED Server ..3

1 FED Software...3

1.1 Libraries Used ..3

1.2 Development Environment..4

1.3 Project Dependencies..5

1.4 Library Versions..5

2 FED Installation...5

2.1 Software Dependencies...5

2.1.1 Log4cpp Installation..6

2.1.2 Oracle Instant Client Installation...6

2.1.3 DIM ...6

2.1.4 Fee2Rorc...7

2.2 Installing the Software..7

2.2.1 Moving the software..7

2.2.2 Compiling the software...7

2.2.3 PIT FED Ini File...8

2.2.5 PIT Coordinates file format ...9

2.2.6 Link Configuration file format ...9

2.2.7 Example of the .bashrc file ...9

3 FED Server DIM interface..10

3.1 FED Commands...10

3.1.1 Standard FED Commands ..10

3.1.2 CTP TINDET Commands ...11

3.2 Status Services..11

1

3.2.1 Link Status Services ...11

3.2.2 Output Status Services ..12

3.2.3 Fastor Calibration Services ...13

3.2.4 Log DIM Service ...13

4 FED Command Line Interface ...14

5 List of FED Commands..14

2

The PIT FED Server
The ALICE PIT (Pixel Trigger) FED (Front End Device) server is software
developed to act as the driver layer of the PIT system.

It was developed in C++ to provide an interface to all hardware features and
to be the first layer of control of the system, it uses a ALICE DDL (digital data
link) to communicate with the hardware. It is able to receive commands from
several computers over the network, configuring the pixel rigger electronics,
providing hardware debugging tools, performing calibration procedures and
publishing status information on the system ensuring the trigger quality. It
runs in a Linux machine with SLC4 and ALICE Date distribution.

1 FED Software

1.1 Libraries Used

The PIT FED server was developed on top of CERN standard libraries used in
its communication layer and in the hardware access with the detector
electronics:

3

PVSS w.
node

(Windows)

DDL

CANbus

DIM

Trigger
Crate

Configuration
 DB

Fed server
(Linux)

PVSS operator
node (Windows)

DIM: Developed at CERN stands for Distributed Information Management
System. It provides a network transparent inter-process communication layer.
It is used by the SPD FED to publish status information and to receive
commands from other computers through the network.

Clara Gaspar, DIM; http://dim.web.cern.ch/dim/

OCCI: Oracle C++ Call Interface (OCCI) is a high-performance and
comprehensive object-oriented API to access the Oracle databases. It is used
by the FED to access the DCS configuration database.

OCCI, Oracle C++ Call Interface: http://www.oracle.com/technology/tech/oci/occi/index.html

Log4cpp: Is a library of C++ classes for flexible logging to files, syslog, IDSA
and other destinations. It is modelled after the Log4j Java library, profiting of
their API as much as possible. It is used for the extensive logging that exists
in all operations of the FED.

Fee2Rorc: Developed at CERN, part of the standard ALICE Data Acquisition
and Test Environment (DATE) distribution, is a thin wrapper over the RORC
driver libraries and is used by the lower level of the software to access the
hardware using the DDL/SIU interface.

Log4cpp source forge :http://log4cpp.sourceforge.net/

1.2 Development Environment

4

DIM OCCI

Log4Cpp

FEE2Rorc

Configuration
DB

Loggers

PVSS Worker
Node

CTP

PIT Electronics

http://www.oracle.com/technology/tech/oci/occi/index.html
http://www.oracle.com/technology/tech/oci/occi/index.html
http://dim.web.cern.ch/dim/

 The PIT FED server was developed using IDE. It is a workspace composed by
2 projects:

pixeltrigger: Top level project containing the DIM interface to PVSS. This
project parses all FED commands and contains references of all classes
PitDbConfiguration: Project containing database access abstraction
classes. Contains classes to manage the PIT configuration. Manages all
database tables with versioning.

1.3 Project Dependencies
Here is the diagram of the projects dependencies in the PIT FED software.

1.4 Library Versions

Library Comment Version

Gcc Gnu Compiler Collection 3.04.00006

Dim Dim communication layer version 17.01

Oracle Instant Client Oracle interface 10.2.0.1

Log4cpp Logging library 1.0.0

2 FED Installation

2.1 Software Dependencies
To install the SPD FED server in a machine please make sure to install the
following software first with all environment variables correctly defined.

5

pixeltrigger

log4cpp

dim

pthread

PitDbConfiguration occi

clntsh

2.1.1 Log4cpp Installation
Usually log4cpp comes with DATE installation, if it is not there you can ask
DATE support to install it. You can also try to install it yourself, even without
root permissions by following the instruction in the following web site:

http://log4cpp.sourceforge.net/

2.1.2 Oracle Instant Client Installation
For the SPD FED server we will need Oracle instant client version 10.2.xx.xx.
If you have root access in this machine you can try to get an rpm, which will
do most of the work for you. If you do not have root permissions or the rpm
does not work perform the following steps:

• download Instant Client from the Oracle web site:
http://www.oracle.com/technology/software/tech/oci/instantclient/htdoc
s/linuxsoft.html . The recommended version is 10.2.04.

• Unzip the instant-client to a known location ex:
“/home/pixeltrigger/bin/oracle/instantclient_10_2”

• Add the database servers that the FED uses to the file tnsnames.ora,
you can start by copying the one from the DFS path:
G:\Aplications\Oracle\ADMIN to the instant client folder. This contains
all CERN Oracle servers maintained by the IT department, just check if
your server exists there, if not add it yourself.

• Configure the environment variables:You will need to create 2 new
environment variables; TNS_ADMIN with the path where you have put
the tnsnames.ora file and the ORACLE_HOME with the path where you
installed the oracle instant-client. You will need also to add the path
where the oracle instant-client was installed to the PATH and to the
LD_LIBRARY_PATH variables.

• If it is a development machine please unzip the SDK to the instant
client path and add the correct include and library paths to the Eclipse
projects configuration.

2.1.3 DIM
DIM comes installed by default in a DATE machine. You just need to configure
the correct dim DNS by editing the DIM_DNS_NODE environment variable.
Configure Eclipse with the includes and the libs paths if it is a development
machine.

2.1.4 Fee2Rorc
Fee2Rorc comes also with the standard DATE distribution. You will only need
to check the include files for the Eclipse IDE.

6

http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/winsoft.html

2.2 Installing the Software

2.2.1 Moving the software
If you are sure that the machine where you want to install the FED server is
running SLC4 with the same DATE distribution as the development machine
at the DSF then you just need to copy the software, if not its better to
compile the software instead. In order to do so compile a version of the
PIT FED, go to the Eclipse workspace path and get the following files:

• pixeltrigger/Debug/pixeltrigger : the pixeltrigger executable

• pixeltrigger/src/coordinatesTable.txt : Coordinates lookup table file

• pixeltrigger/src/linkConfiguration.txt: link configuration file

• PitDbConfiguration/Debug/libPitDbConfiguration.so: The pixel
trigger database configuration library

copy these files to a known location. Add the path to where you've copied the
libPitDbConfiguration.so file to the LD_LIBRARY_PATH. Finally edit
pit_configuration.ini with the correct settings and the other configuration files
if needed. And that's it, try to run the executable to see if it is working.

2.2.2 Compiling the software
To compile the software in the destination machine instead of just moving it
to the following:

• Go to the Eclipse workspace path and copy the source folders and the
output folders of both pixeltrigger and PitDbConfiguration projects ex.:
pixeltrigger/src/, pixeltrigger/Debug/

• Go to where you copied the output folders of both projects and in each
one of them run the following commands :

make clean

make all

• Add the path where the libPitDbConfiguration.so is located to the
LD_LIBRARY_PATH

2.2.3 PIT FED Ini File
After moving the FED server you now need to configure some generic settings in the ini file. Open
the pit_configuration.ini file and you should see something like this:

7

[Data Base]

conString=DEVDB10

user = ALICE_DCS_SPDTRG

passwd = pixel456

################link coordinates Area#############################

this changes how the links in the optin boards are assigned to sector, side,
halfstave

[Coordinates table]

fromDataBase=false # tells if we load the coordinate table from the
database or not

if the fromDataBase is set to false then here we can specify a coordinate
table file

configurationFile=./src/coordinatesTable.txt

[link configuration]

fromDataBase=false # tells if we load the coordinate table from the
database or not

dbVersionNumber= 1 # if the fromDataBase is set to true then which version
in the db to use

if the fromDataBase is set to false then here we can specify a coordinate
table file

configurationFile=./src/linkConfiguration.txt

Table with the available categories and settings.

DataBase category

conString Connection string, defines a Oracle database server.
Look at tnsnames.ora file to find out about available
connection strings

User User name for the database connection

Passwd Database password for the corresponding user

Coordinates table
category

fromDatabase If true then loads the coordinates lookup table from
the database, if false then loads then from a file

configurationFile Defines the file from where to load the coordinates

8

Link Configuration
category

fromDatabase If true then loads the link settings from the
database, if false then loads then from a file

DbVersionNumber Defines which link database version to load at the
start of the fed

ConfigurationFile If the fromDatabase is equal to false them this
defines which file to load the link settings from

2.2.5 PIT Coordinates file format
This file is used as a lookup table for the hardware to get from hardware
coordinates (board,link) to the detector coordinates (sector,side,halfstave).

Its a white space separated table with each line containing: board, link,
sector, side, halfstave settings for one link ex. :

#coordinate file table

board link sector side halfstave

 0 0 0 A 0

 0 1 0 A 1

2.2.6 Link Configuration file format
Its a file used to configure the link settings on the initialization of the FED
server.

Its a white space separated file with each line containing: sector, side,
halfstave, required fastors, link delay ex.:

#required fastors file table

sector side halfstave requiredFO link delays

 0 A 0 1100000001 0

 0 A 1 0000000000 0

in the required fastor setting its a 10 bit binary number the left most value
corresponds to chip 0. for example “1100000000” means that only chip 0 and
chip 1 are active for triggering in this channel.

2.2.7 Example of the .bashrc file
Here is an example for the .bashrc file to make the PIT fed server run. Here
you can find the definition of all environment variables.

9

export DIM_DNS_NODE=spdfed0.cern.ch

export DIMDIR=/opt/dim

export LD_LIBRARY_PATH=/opt/dim/linux

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/home/pixeltrigger/log4cpp-
1.0/src/.libs

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/opt/date/rorc/Linux

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/opt/date/fec/Linux

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib

e

#this is the path for the PitDbConfiguration shared library

export LD_LIBRARY_PATH=$
{LD_LIBRARY_PATH}:/home/pixeltrigger/eclipse/workspace/PitDbConfiguration/Debug/

#Oracle settings

export LD_LIBRARY_PATH=$
{LD_LIBRARY_PATH}:/home/pixeltrigger/bin/oracle/instantclient_10_2

export TNS_ADMIN=/home/pixeltrigger/bin/oracle/instantclient_10_2

export ORACLE_HOME=/home/pixeltrigger/bin/oracle/instantclient_10_2

PATH=~/bin:/home/pixeltrigger/bin/oracle/instantclient_10_2:$PATH

3 FED Server DIM interface

3.1 FED Commands

3.1.1 Standard FED Commands
For the PIT FED a command structure was devised to be flexible, capable of
receiving a variable number of arguments, to accurately display the status of
the execution of all commands and to be capable of dealing with the fact that
several instances can send commands at the same time.

A command channel in the PIT FED is composed of a DIM command and 4
status informations brought through DIM services:

● Command: DIM command which is a white space separated string
containing the command to be executed followed by all its parameters
“command arg1 arg2..argN” ex: “write_register 0x18000 0xDEADBEEF”

● Command Status: DIM service with a string publishing the execution
status of the command, possible values are: “FINISHED”, “EXECUTING”,
“FAILED”

● Command Return: DIM service, an integer containing the return
value of the command if any. If the command would be reading a

10

register this service would contain, after finishing the command, the
actual register value.

● Command ID: DIM service integer containing an unique id for the
current command being executed, useful if several instances send
commands at the same time

Command DIM Commands Comment

PIT/COMMAND Command name: A string identifying the command to be executed

Command DIM Services Comment

PIT/CMD_RETURN Data Out: Integer service with the return value fo the last command
sent to the FED

PIT/CMD_STATUS Command Status : Dim service displaying the execution status of
the FED commands, “EXECUTING”, “FINISHED”, “FAILED”

PIT/CMD_ID Command ID : Displays the id of the command being executed, its
incremented on the start of each command.

3.1.2 CTP TINDET Commands
The CTP (Central Trigger Processor) during testing procedures needs to have
a handle on the pixel trigger output modes. In order to do so there is a special
DIM command called SPD/SET_OPTIONCODE where it can set directly the
mode (normal, toggler, random, signature) of all the 10 output PIT outputs.

3.2 Status Services
Connecting the SPD hardware to the rest of the world the SPD FED server
has to work also as one information hub of the system. Data that are
relevant to the overall stability of the system need to be constantly
monitored and passed quickly to the PVSS supervision layer for monitoring
purposes and Alarm generation. So in addition of the data that can be
retrieved trough commands both SPD FED servers publish a list of several
parallel DIM Services displaying extra information of the system.

3.2.1 Link Status Services

11

Link Status Services Comment

PIT/SIDE_<A,C>/SECTOR_<0..9>/HALFSTAVE<0.
.6>/REQUIRED

Link Required: 120 DIM services, one per half-stave,
Displaying if there is at least one fastor required in this
channel

PIT/SIDE_<A,C>/SECTOR_<0..9>/HALFSTAVE<0.
.6>/LOCKED

Link Locked: 120 DIM services, one per half-stave,
displaying if the HP deserializer is locked or not. (if there is
some light coming out of the GOL chip)

PIT/SIDE_<A,C>/SECTOR_<0..9>/HALFSTAVE<0.
.6>/ERROR

Link Error : 120 DIM services, one per half-stave, displaying
if the fastor rate for this channel is between the normal
thresholds or not

PIT/FO_COUNTERS_SIDE_A Fastor Counters for Side A: Big array containing all
600 counters for side A. Used by SPD FED server A
during Fastor calibration scans

PIT/FO_COUNTERS_SIDE_C Fastor Counters for Side C: Big array containing
alls 600 counters couters for side C. Used by SPD FED
server C during Fastor calibration scans

3.2.2 Output Status Services

Output Status Services Comment

SPD/STATUS_OPTIOCODE TinDet Outputs Option Codes: one dim service displaying
an array with the ouput modes (nomal, toggle, signature,
random)

PIT/PROCESSING/MODE_OUTPUT_<0..9> Output Modes: 10 dim services, one per output, displaying a
string with the mode of the output

PIT/PROCESSING/COUNTER_OUTPUT_<0..9> Output Counter: 10 dim services, one per output,
containing the FPGA counter register from the last
time that the “stop counters” command was sent

PIT/PROCESSING/COUNTER_RATE_<0..9> Output Counter: 10 dim services, one per output,
containing the output trigger rate in Hz from the last
time that the “stop counters” command was sent

PIT/PROCESSING/COUNTER_AVG_RATE_<0..9> Output Counter: 10 dim services, one per output,
containing the output average rate in Hz counted
since the last time the counter where started (long
time ago)

12

PIT/PROCESSING/COUNTER_TOTAL_COUNTER
<0..9>

Output Total Counter: 10 dim services, one per
output, containing the counters in float values,
without the overflow of the FPGA.

PIT/PROCESSING/START_COUNTERS Start of the Counters: One dim service displaying
the last time the counters where started. Useful for
trigger rate assessment

PIT/PROCESSING/COSMIC_ALGORITHM Cosmic Algorithm Mode: Displays the selected
mode for the cosmic algorithm (output 9)

PIT/FO_COUNTERS_SIDE_A Fastor Counters for Side A: Big array containing all
600 counters for side A. Used by SPD FED server A
during Fastor calibration scans

PIT/FO_COUNTERS_SIDE_C Fastor Counters for Side C: Big array containing
alls 600 counters couters for side C. Used by SPD FED
server C during Fastor calibration scans

3.2.3 Fastor Calibration Services

FO Calibration Status Services Comment

PIT/FO_COUNTERS_SIDE_A Fastor Counters for Side A: Big array containing all
600 counters for side A. Used by SPD FED server A
during Fastor calibration scans

PIT/FO_COUNTERS_SIDE_C Fastor Counters for Side C: Big array containing
alls 600 counters couters for side C. Used by SPD FED
server C during Fastor calibration scans

PIT/CMD_STATUS_FED_A Command Status FED Server A: Dedicated
command status for FED server A to be used during
fastor Calibration runs

PIT/CMD_STATUS_FED_C Command Status FED Server C: Dedicated
command status for FED server C to be used during
fastor Calibration runs

3.2.4 Log DIM Service
The PIT Fed Server sends logging information to the PVSS supervision layer or
any other system through the dim service PIT/LOG

LOG Service Name Comment

13

PIT/LOG Pit Log Dim service: Contains Logging information
from the PIT FED the threshold can be configured
using the

4 FED Command Line Interface
Using the high level architecture of the FED server allows sending commands
directly through a command line interface. This feature is managed by the
pit_keyboard class. It uses the “termios.h” and “poll.h” unix C libraries to
scan from the keyboard input without stopping the execution loop of the FED
server. It is able to perform normal tasks and commands from other sources
at the same time while the operator types commands in the PIT FED console.

The command structure is the same as for the DIM commands, feedback of
the execution status is available by following one of the log channels of the
FED.

The command line interface was extremely useful during the early
commissioning phase for testing the hardware features and to perform bit
error rate measurements on the system.

5 List of FED Commands
all_self_masking_disable

a

Command to clear the masking enable bits for all chips

C

all_self_masking_enable

a

Command to set the masking enable bits for all chips

C

assign_chip_fomask

a

Command to set or unset mask on a chip (fastor channel)

Parameters:

 sector

s

 side

s

 halfStave

h

 chipNumber

c

 maskValue [0;1]

14

1

auto_check_phases

a

Command to auto check phases in all required locked links

C

auto_configure_delays

a

Command to auto configure delays in all required locked links

C

reset_bus_master

r

Command to reset the bus master interface in the control fpga

C

clear_chip_fomask

c

Command to clear the mask on a chip (fastor channel)

Parameters:

 sector

s

 side

s

 halfStave

h

 chipNumber

cc

create_trigger_conditions_file

c

Command to create the file to be exported to offline

Parameters:

 runNumber The file generated contains the run number received from
the DCS

t

export_trigger_conditions_file

e

Command to export to the file exchange server, if no file name is supplied it
will defaul to pit_dumpFile.txt

Parameters:

 runNumber,fileName

rr

15

get_firmware_version

g

Command that returns the processing firmware version currently loaded from
the database

t

get_link_conf_version

g

Command that returns the link configuration version currently loaded from
the database

t

load_firmware_db_conf

l

Command to load a new database configuration for the processing FPGA

Parameters:

 firmwareVersionNumber The version of the firmware to retrieve from
the database

t

load_link_coordinate_file

l

Command to load the link coordinate file

Parameters:

 filename

ff

load_link_db_conf

l

Command to load a new link database configuration

Parameters:

 linkVersionNumber The number of the links configuration to
retrieve from the database

r

load_link_settings_file

l

Command that makes the pit configuration layer load the masking and delays
for all links from a file (if used without filename it will reload the current
defaul configuration)aram filename

d

load_parameter_db_conf

l

Command to load a new parameter database configuration

16

Parameters:

 parameterVersionNumber

pp

save_link_conf_to_db

s

Command to save a new link configuration version, reads the hardware and if
there is no change does not do anything

t

save_parameter_conf_to_db

s

Command to save a new parameter configuration version, reads the
hardware and if there is no change does not do anything

h

fastor_transmission_test

f

Command to perform a number of Fast OR transmission loops returning the
total number of bit errors

Parameters:

 numberRepetitions

n

 sleepTime

ss

fctl

f

Command to write a front end control word to the DDL (expert only)

C

find_noisy_chips

f

Command to read all FastOr counters and find FastOr noisy chips

Parameters:

 minFastOrCounts Minimum number of FO counts for a chip to be
shown in the log

s

force_fo_channel

f

Command to force (value=1) or release (value=0) a fastor channel, setting or
resetting the User Defined FO bit

Parameters:

17

 sector

s

 side

s

 halfStave

h

 chipNumber

c

 value [0;1]

[

get_parameter_version

g

Command that returns the processing firmware parameters version currently
loaded from the database

l

get_link_counters_auto_en

g

Command to get the counters auto enablr

Parameters:

 sector

s

 side

s

 halfStave

h

Returns:

 autoEnableFlag

link_pooling_settings

l

Command to set the link pooling settings

Parameters:

 enable Pooling false or true

 interval

i

read_link_delay

r

Command to read the delay from one optical link

Parameters:

 sector

s

 side

s

18

 halfStave

hh

read_error_counter

r

Command to read the error counter from one optical link

Parameters:

 sector

s

 side

s

 halfStave

hh

read_fo_mask

r

Command to get the fastor mask of one optical link

Parameters:

 sector

s

 side

s

 halfStave

hh

read_link_phase

r

Command to read the phase (modulo 4) of the communication stream of one
optical link

Parameters:

 sector

s

 side

s

 halfStave

hhh

read_proc_timer_period

r

Command to read the timer period

Returns:

 Period Pit timer period in number of BCs

read_self_masking

r

19

Command to read the masking enable bits from one optical link

Parameters:

 sector

s

 side

s

 halfStave

hh

read_link_time_stamp

r

Command to read one of the time stamp registers of an optical link

Parameters:

 sector

s

 side

s

 halfStave

h

 timeStampReg Number of timestamp register [0-2] range

N

read_udf_enable

r

Command to read the user defined fastor enable bit of one optical link

Parameters:

 sector

s

 side

s

 halfStave

hh

refresh_link_status

r

Command to refresh status services and internal data members of one optical
link channel

Parameters:

 sector

s

 side

s

 halfStave

hh

set_link_counters_auto_en

s

20

Command to set the counters auto enablr

Parameters:

 sector

s

 side

s

 halfStave

h

 auto_enable (0,1)

(

start_link_counters

s

Command to start link counters

Parameters:

 sector

s

 side

s

 halfStave

hh

stop_link_counters

s

Command to stop link counters

Parameters:

 sector

s

 side

s

 halfStave

hh

write_link_delay

w

Command to write the delay for one optical link

Parameters:

 sector

s

 side

s

 halfStave

h

 delay Delay value modulo 4 [0;3]

D

write_fo_mask

w

21

Command to write the fastor mask of one optical link

Parameters:

 sector

s

 side

s

 halfStave

h

 maskValue 0 or 1

0

write_self_masking

w

Command to write the masking enable bits of one optical link

Parameters:

 sector

s

 side

s

 halfStave

h

 maskingEnableBits HEX (0x...) 10 bits, one per chip. 0 OFF, 1 ON

H

write_udf_enable

w

Command to write the user defined fastor status enable bit in the optical link

Parameters:

 sector

s

 side

s

 halfstave

h

 value 0 or 1

0

load_file_to_ctrl_sram

l

Loads a binary file to the control fpga sram

Parameters:

 fileName

f

 baseAddress WARNING: baseAddress is presently IGNORED

W

memory_access_test

m

22

Command to perform a number of read write loops returning the total
number of bit errors

Parameters:

 blockLength

b

 initialAddress

i

 finalAddress

f

 addressIncrement

a

 numberRepetitions

nn

check_board_plugged

c

Command to check if a board is plugged or not (maybe not needed but left it
there)

Parameters:

 sector

s

 side

s

 halfStave

hh

is_optin_prog_done

i

Command to check if a optin board is being programmed or not

Parameters:

 sector

s

 side

s

 halfStave

h

Returns:

 booleanValue

read_aux_time_stamp

r

Command to read one of the aux time stamp registers from an optin board

Parameters:

 sector

s

23

 side

s

 halfStave

h

 auxTimeStampNumber Auxiliar time stamp register [0-2]

A

read_max_fastor_counts

r

Command to read maximum fastor counts from an optin board

Parameters:

 sector

s

 side

s

 halfStave

h

 layer

l

 chip

cc

read_min_fastor_counts

r

Command to read minimum fastor counts from an optin board

Parameters:

 sector

s

 side

s

 halfStave

h

 layer

l

 chip

cc

refresh_optin_status

r

Refreshes the status of one optin board channel

Parameters:

 sector

s

 side

s

 halfStave

hh

reset_optin

r

24

Resets one OPTIN board

Parameters:

 boardNumber

bb

reset_optin_all

r

Resets all OPTIN boards

R

reset_optin_parameters

r

Resets the setting registers of optin board

Parameters:

 boardNumber

bb

start_optin_counters

s

Command to start counters of all links in one optin board

Parameters:

 boardNumber

bb

stop_optin_counters

s

Command to stop counters of all links in one optin board

Parameters:

 boardNumber

bb

write_max_fastor_counts

w

Command to write the maximum fastor counts to an optin board

Parameters:

 sector

s

 side

s

 halfStave

h

 layer

l

 chip

c

25

 value

vv

write_min_fastor_counts

w

Command to write the min fastor counts to an optin board

Parameters:

 sector

s

 side

s

 halfStave

h

 layer

l

 chip

c

 value

vv

get_algorithm_parameter

g

Command to get one parameter for one algorithm

Parameters:

 algorithmNumber [0;9]

 parameterNumber [0;2]

Returns:

 parameterValue

get_cosmic_algorithm

g

Command to read the algorithm executed for the cosmic output

Returns:

 cosmicAlgorithm [0;5]

mask_optin

m

Command to mask one optin board from the read out of the processing fpga

Parameters:

 boardNumber

bb

26

is_proc_prog_done

i

Command to check if the processing fpga is programmed or not

Returns:

 booleanValue

read_proc_cmd

r

Command to read the command register of the processing fpga

Returns:

 commandCode Last command executed

read_proc_counter

r

Command to read one counter output in the processing fpga

Parameters:

 outputCounterNumber [0;9]

[

read_proc_gen_counter

r

Command read a general purpose counter in the processing fpga

Parameters:

 counterNumber

cc

read_proc_settings

r

Command to read one settings register of the processing fpga

Parameters:

 settingRegisterNumber [0-9]

[

read_proc_signature

r

Command to read a signature register from processing fpga

Parameters:

 outputNumber [0;9]

Returns:

27

 Signature

read_proc_status

r

Command to read the one of the status register of the processing fpga

Parameters:

 statusRegisterNumber

ss

read_proc_time_stamp

r

Command to read a time stamp from the processing fpga

Parameters:

 timeStampNumber [0;2]

[

read_trigger_mode

r

Command to read the trigger mode for one output

Parameters:

 outputNumber

o

Returns:

 mode [0;3]

read_proc_firmware_version

r

Command to read the version register content

C

reset_proc_fpga

r

Resets the processing fpga (not the configuration nor the parameters)

R

reset_proc_fpga_parameters

r

Resets the configuration registers and ALL PARAMETERS of the processing
fpga

f

set_algorithm_parameter

s

28

Command to set one parameter for one algorithm

Parameters:

 algorithmNumber [0;9]

 parameterNumber [0;2]

 parameterValue

pp

set_all_algorithm_parameters

s

Command to set all 3 parameters for one algorithm

Parameters:

 algorithmNumber[0;9]

a

 par0 Parameter 0 value

 par1 Parameter 1 value

 par2 Parameter 2 value

P

set_cosmic_algorithm

s

Command to set the algorithm for the cosmic output (output 9, 0SCO)

Parameters:

 algorithmNumber [0;5]

[

set_proc_timer_enable

s

Command to set the timer enable bit

Parameters:

 value [0;1]

[

start_proc_counter

s

Command to start a counter in the processing fpga

C

stop_proc_counter

s

Command to stop a counter in the processing fpga

C

29

unmask_optin

u

Command to unmask one optin board from the read out of the processing
fpga

Parameters:

 boardNumber

bb

write_proc_cmd

w

Command to write in the command register of the processing fpga

Parameters:

 commandCode

cc

write_proc_settings

w

Command to write one of the settings register of the processing fpga

Parameters:

 settingRegisterNumber [0;9]

 value

vv

write_proc_timer_period

w

Command to write the timer period in the fpga

Parameters:

 timerPeriod

tt

write_trigger_mode

w

Command to write the trigger mode for one output

Parameters:

 outputNumber [0;9]

 mode (normal, toggle, signature, random)

(

write_trigger_mode_num

w

Command to write the trigger mode for one output

30

Parameters:

 outputNumber [0;9]

 mode [0;3]

[

program_proc_fpga

p

Programs the the processing FPGA using a ACE file

Parameters:

 aceFileName

aa

execute_ace_file

e

Sends a command to the programmer to execute an ACE file

Parameters:

 aceFileName,jtagSelector

aa

read_programmer_base_address

r

Reads the value of the programmer register containing the base ram address

Returns:

 baseAddress

read_programmer_clk_division

r

Reads the value of the JTAG programmer clk_division register

Returns:

 clkDivision

read_programmer_jtag_selector

r

Reads the value of the JTAG programmer jtagSelector field

Returns:

 jtagSelector

read_programmer_status

r

31

Reads the status of the programmer, for the moment only logs the data

Returns:

 programmerStatus Status word of the JTAG programmer

start_programmer

s

Starts the execution of the ACE file to program the processing FPGA

S

write_programmer_base_address

w

Writes the value of the programmer base ram address field

Parameters:

 baseRamAddress

bb

write_programmer_clk_division

w

Writes the value of the JTAG programmer clk_division register

Parameters:

 clkDivision

cc

write_programmer_jtag_selector

w

Writes the value of the programmer jtagSelector field

Parameters:

 jtagSelector

jj

reset_qpll

Command to reset the QPLL chip

C

rate_measuring_settings

r

Command to change set the rate measuring settings

Parameters:

 enable,interval

ee

32

read_fo_counter

r

Command to read the fastor counter of a fastor channel channel

Parameters:

 sector

s

 side

s

 halfStave

h

 chipNumber

cc

read_word

r

Command to read from a memory position

Parameters:

 address Address in the PIT address space

A

refresh_clk_status

r

Command to refresh the DIM services showing status of QPLL, TTCRx and
clock locked

c

refresh_fo_status

r

Command to refresh services and menbers of one fastor channel channel

Parameters:

 sector

s

 side

s

 halfStave

h

 chipNumber

cc

refresh_fo_counters

r

Command to refresh both dim services with the fastor counters

C

refresh_global_status

r

Command to refresh all status services and internal members of the pit driver

33

à

release_fo_channel

r

Command to release a fastor channel, resets the User defined FO bit

Parameters:

 sector

s

 side

s

 halfStave

h

 chipNumber

cc

scan_clock_delay

s

Command to scan the clock delay and measure phases

Parameters:

 referenceLink Reference link the phase of which is used as
reference in the report

 firstTtcrxDelay First value to set in the TTCRx Delay register

 finalTtcrxDelay Last value to set in the TTCRx Delay register

 delayStep Difference between consecutive delay values

D

set_dim_log_threshold

s

Command to set the logging level of the logging dim appender logging

Parameters:

 threshold (debug,info,notice,warn,error,crit,alert,fatal)

(

set_file_log_threshold

s

Command to set the logging level of the logging file appender logging

Parameters:

 threshold (debug,info,notice,warn,error,crit,alert,fatal)

(

reset_siu

r

Command to reset the SIU card in case of problems

34

3

start_all_counters

s

Command to start ALL PIT counters

C

start_focounters_for_fed

s

Command to start fastor counters for one spd fed server, used in fastor
calibrations scans

Parameters:

 side Select the side (spdFed) A or C

S

stop_all_counters

s

Command to stop ALL PIT counters

C

stop_focounters_for_fed

s

Command to stop fastor counters for one spd fed server, updates the service
with fastor counters automaticaly

Parameters:

 side Select the side (spdFed) A or C

S

strd

Command to read from a status word from DDL (expert only)

C

test_ttcrx_access

t

Launches a test of write/read accesses to the TTCRx register

Parameters:

 numRepetitions

n

 registerNumber

rr

read_ttcrx_finedelay

r

Reads the value of the Fine Delay 1 register of the TTCR.

35

Returns:

 FineDelayValue

read_ttcrx_delay

r

Reads the value of the Fine Delay 1 register of the TTCRx, converts to integer
steps and absolute delay

Returns:

 stepValue

read_ttcrx_register

r

Reads the value of a TTCRx register

Parameters:

 registerNumber

r

Returns:

 registerValue

reset_ttcrx_pin

r

Command to reset the TTCRx chip

C

scan_ttcrx_address

s

Scan the I2C bus to find the I2C address of the TTCRX chip. Data members
are set automatically

a

write_ttcrx_finedelay

w

Writes a value to the Fine Delay 1 register of the TTCRx

Parameters:

 NewFineDelayValue

NN

write_ttcrx_delay

w

Write the proper value to the Fine Delay 1 register of the TTCRx calculated
from the delay parameter expressed in number of steps

36

Parameters:

 stepValue

ss

write_ttcrx_register

w

Write a value to a register of the TTCRx

Parameters:

 registerNumber

r

 registerValue

rr

write_word

w

Command to write to a memory position

Parameters:

 address Address in the PIT address space

 value Value to write

37

	The PIT FED Server
	1 FED Software
	1.1 Libraries Used
	1.2 Development Environment
	1.3 Project Dependencies
	1.4 Library Versions

	2 FED Installation
	2.1 Software Dependencies
	2.1.1 Log4cpp Installation
	2.1.2 Oracle Instant Client Installation
	2.1.3 DIM
	2.1.4 Fee2Rorc

	2.2 Installing the Software
	2.2.1 Moving the software
	2.2.2 Compiling the software
	2.2.3 PIT FED Ini File
	2.2.5 PIT Coordinates file format
	2.2.6 Link Configuration file format
	2.2.7 Example of the .bashrc file

	3 FED Server DIM interface
	3.1 FED Commands
	3.1.1 Standard FED Commands
	3.1.2 CTP TINDET Commands

	3.2 Status Services
	3.2.1 Link Status Services
	3.2.2 Output Status Services
	3.2.3 Fastor Calibration Services
	3.2.4 Log DIM Service

	4 FED Command Line Interface
	5 List of FED Commands

