Notes on the Pixel Trigger processing card
development

Gianluca Aglieri Rinella
July 31, 2007

Abstract

Internal report. Notes on the design of the central processing card
(BRAIN) of the Alice Pixel Trigger system.

1 General architecture

The Alice Pixel Trigger system is designed with a modular structure. Ten optical
input boards receive data from the 120 half staves and extract the Fast-OR
signals. The Fast-OR signals are processed in the FPGA of a central processing
board to generate the trigger decision. The optical input boards are plugged
on the central processing board as mezzanine cards. A block diagram of the
system is shown in Fig.1. A virtual view of the system is shown in Fig.??.

The decision algorithm is implemented in programmable hardware. The
processing FPGA on the mother board receives the FastOR signals on 600
parallel lines, coming from the ten optical input boards. The 1200 FastOR
signals are time multiplexed in two consecutive 12.5 ns clock periods. The
output of the processing block is sent to the Central Trigger Processor via
dedicated lines. Proper buffering is foreseen.

Status monitoring and remote configuration functionality have to be pro-
vided. These are implemented via a dedicated Controller FPGA. Interfaces
between the various elements of the system are implemented in this block.

The I/0O signalling standard is LVTTL.

2 Memory structure

The communication between the various OPTIN boards and the BRAIN board
devices is done on a shared data bus. Fig. 2 shows an idealized view of the
interconnection buses between the devices. The shared bus lines are actually
driven by buffers controlled by the CONTROL FPGA. These are not shown for
clarity.

2.1 DDL and SIU interface

The SIU block is the board interfacing to the DDL and constitutes the commu-
nication interface from and to the remote controlling host computer. The DDL
can transfer 32 bit data in blocks. Minimum length of a data block is 1 and

maximum length is 512 Kwords, each of 32 bits. Therefore 19 bits are needed to
account for the length of a data block . A DDL data block transfer is initiated by
user commands STBRD or STBWR containing a 19 bit user defined parameter
field. When reading a block from the Front End Electronics (FEE) to the host
computer, the length of the data block transferred is reported to the host at the
end of the transmission, using the 19 bit parameter field of the FESTW(EOB).
No information on the block length is transmitted from the host to the FEE on
a request of a block read/write operation.

The DDL protocol also supports direct control words write and status words
read on the FEE. The control and status words can be addressed by a 19 bit
user defined parameter. In other words the host can send to the FEE a control
command (FECTRL) including a 19 bit user defined parameter field. No answer
from the FEE is expected by the host in this transaction. A status word can be
requested to the FEE by the host with the FESTRD command also including a
19 bit parameter value. The FEE replies in this case with a FESTW including
a 19 bit parameter field that is the answer to the host request.

The FECTRL/FESTRD pair of commands can be used to implement fast
direct access to a set of Special Purpose (SP) registers of the CONTROL FPGA
dedicated to the communication control, to the status monitoring and to direct
commands. No flow control is implemented in the read/write operations to
these registers, ensuring minimum latency. The STBRD/STBWR pair can be
used to implement access to all the registers and memory on the BRAIN card
and on the ten OPTIN cards.

2.2 Memory on the BRAIN board

The CONTROL FPGA firmware implements various internal registers. The
CONTROL FPGA also has dedicated external SRAM memory. The main use
of this memory is to store the JTAG bitstream that is necessary to shift to
the PROCESSING FPGA for its reprogramming. It is also necessary to read
back the configuration firmware of the PROCESSING FPGA for verification of
the programming. The CONTROL SRAM is constituted by 4 chips of 72 Mb.
Effectively a SRAM space with a width of 32 bits and a depth of 223 words is
available. That is 223 x 4 = 33554432 bytes of memory.

The PROCESSING FPGA also has dedicated SRAM memory for sampling
fastor data, if needed. This latter memory is half of the CONTROL memory,
i.e. 222 words deep, 32 bit wide. The PROCESSING FPGA also has internal
registers to implement masks, counters, thresholds and configuration of the main
outputs.

Each OPTIN card has several registers. They are used to implement coun-
ters, thresholds, masking, optical link status monitoring and state machines
monitoring.

A shared bus allows the communication between the peripherals devices and
the CONTROL FPGA. This acts as bus master. A pseudo-PCI bus protocol is
implemented.

All memory locations including registers in the FPGAs and SRAM memory
can be accessed via the DDL as virtually belonging to a single addressing space.
The address width of this virtual space is 28 bits, four out of which are used for
device identification. Given that 12 devices are addressable in the system, then

spare addresses are left for broadcast (multiple target) write operations to the
OPTIN cards. Table 1 details the organization of the address space.

Bus contention and management is done by the CONTROL FPGA firmware
and shall be completely transparent to the DDL user. Routing to internal reg-
isters or to external SRAM chips is done in the CONTROL and PROCESSING
FPGAs.

2.3 Accessing the 28 bit space with the 19 bit parameter
field constraint on the DDL

In a generic block read/write operation one needs to transmit to the FEE the
address of the starting memory position from/at which the transferred block
should be read/written. This requires 28 bit to be transferred. Only 19 bit are
directly available on the STBRD/STBWR commands user payloads. To solve
this issue the following mechanism is implemented.

Two Special Purpose 9 bit registers rd_af27:19] and wr_a[27:19] are imple-
mented in the FEE. The 28 bit base address is obtained by padding the 19
bit transmitted with the STBRD/STBWR commands with the 9 bits stored in
the register corresponding to a block read (rd-a[27:19]) or write (wr_a[27:19])
operation. The rd_af27:19] and wr_a[27:19] registers can be set with a FEC-
TRL command sent to the FEE immediately before the STBRD or STBWR
commands.

In a block read (STBRD) operation also the length of the requested block
must be transmitted to the FEE. The bits required to account for a maximum
length of 512 kWords are 19. The Special Purpose len[18:0] register is imple-
mented for this purpose in the FEE. It is not possible to set this register with one
single FECTRL transaction. Therefore two consecutive FECTRL transactions
must be used to set len[18:0] and must be executed before a STBRD opera-
tion. On receipt of the STBRD the FEE electronics initiates a data block read
from the memory space. The base address is determined as discussed before.
The block length is limited by the content of register len/18:0]. The number
of words actually read from the memory space can be less than the requested
value, for example because the base address and the length imply reading from
a not addressable region or beyond the maximum address. The actual value
of words transferred is sent to the host by the FEE using the FESTW(EOB)
19 bit payload. This value is also stored in the FEE Special Purpose register
rd_len[18:0].

In a block write (STBWR) operation the block length is not transmitted
explicitly. It is determined by the length of the data transmission itself, marked
by the EOBTR word sent from host D-RORC (host) to the FEE. The length
can be up to 512 kWords. The actual number of words written to the memory
space is stored by the FEE in the wr_len[18:)] Special Purpose register at
the end of the transaction. This number can be less than the number of words
actually transferred during the block write if, for example, the automatic address
increment would write to an un-addressable region or would imply passing from
a register space into a contiguous SRAM space.

The values of the len[18:0], rd_len[18:0] and wr_len[18:0] registers, contain-
ing respectively the requested length of data to be read, the actual length of
data read and the actual length of data written in the last transactions, can be
directly retrieved with FESTW commands.

The parameter field values of the FECTRL and FESTRD used to set and
read the described Special Purpose registers are listed in Table ?77.
In summary, the basic block write transaction is therefore composed of:

1. The setting of the wr_a[27:19] register
2. The DDL STBWR block write transaction itself.

3. The read back of the actual value of the length of written data block from
the wr_len[18:0] register.

The basic block read transaction is composed instead of:
1. The setting of the rd_a[27:19] register
2. The setting of the len[27:19] register

3. The DDL STBWR block read transaction itself, also giving back the actual
value of data words read.

2.4 Lower communication layer function prototypes

The previous addressing mechanism is implemented by the lowest level of the
PIT driver. This software routines wrap entirely the DDL library calls that are
completely hidden to the upper levels. The prototypes of the lowest level PIT
driver functions are described in this paragraph.

In direct correspondence with the previously defined FEE Special Purpose
registers, there are the following getter functions to read via DDL each register
value:

o int PITGetRdA()
o int PITGetWrA()
e int PITGetLen()
e int PITGetRdLen()

o int PITGetWrLen().

Each of the previous makes a call to the DDL library implementing a FESTRD
transaction, using the parameters listed in Table ?7. Notice that the getters of
the address shall return directly the full address with all 19 bits. In case an
error of the DDL is detected this should also be flagged with a proper return
value.

Three of the discussed registers must also be written to, so corresponding
setter functions are:

e int PITSetRAA(UINT28 address)
{
/* call the DDL library function for FECTRL with proper parameter to
set the rd_a[27:19] register bits */
/* call the DDL library function for FESTRD with proper parameter to
read back the rd_af27:19] value */
/* compare the value read back and flag possible error */

}

e int PITSetWrA(UINT28 address)
{
/* call the DDL library function for FECTRL with proper parameter to
set the wr_a[27:19] register bits*/
/* call the DDL library function for FESTRD with proper parameter to
read back the wr_a[27:19] value */
/* compare the value read back and flag possible error */

}

e int PITSetLen(UINT19 datalength)
{
/* call the DDL library function for FECTRL with proper parameters to
set the len[18:9] register bits */
/* call the the DDL library function for FECTRL with proper parameter
to set the len[9:0] bits of the len register */
/* call the DDL library function for FESTRD with proper parameter to
read back the len/18:0] value */
/* compare the value read back and flag possible error */

}

Return values of the previous functions should flag eventual errors in the
DDL transaction.

Notice that the two setters for the read and write address receive as param-
eter the entire 28 bit address value, even if they use only the upper 9 bits. In
this way the extraction of the proper bits is implemented entirely inside these
functions and hidden to the calling functions. If the hardware implementation
changed, only the implementation of this function would need to be modified.

The two main data block read and write functions prototype and algorithms
are:

e int PITReadBlock(UINT28 address, UINT19 datalength, UINT32 *data)
{
/* call the PITSetLen function to set the requested data block length */
/* call the PITSetRAA passing address to properly set the rd_af27:19]
register bits */
/* call the DDL library function for STBRD with proper parameters (in-
cluding address lower bits) to read back the data block and store it to
*data */
/* call PITGetRdLen to verify the number of words actually read from
the DDL and return */

}

e int PITWriteBlock(UINT28 address, UINT19 datalength, UINT32 *data)

/* call the PITSetWrA function to set the wr_a[28:19] bits */

/* call the DDL library function for STBWR with proper parameters to
write the data block from memory location *data with length datalength
and starting writing at the location given by address*

/* call PITGetWrLen to check the number of words actually written to

memory */

}

Table 1: PIT memory map. The 28 bit addresses are given in hex together
with decimal value. Boundaries between the various region and unimplemented
regions are also shown.

Address [hex| | Address [dec] | Rel. pos.

0000000 0 0 Beginning of CONTROL reg. space
0000001 1 1

0000002 2 2

07FFFFE 8388606 8388606

07FFFFF 8388607 8388607 | End of CONTROL reg. space
0800000 8388608 0 Beginning of CONTROL SRAM space
0800001 8388609 1

0800002 8388610 2

OFFFFFE 16777214 8388606

OFFFFFF 16777215 8388607 | End of CONTROL SRAM space
1000000 16777216 0 Beginning of PROCESSING reg. space
1000001 16777217 1

1000002 16777218 2

17FFFFE 25165822 8388606

17FFFFF 25165823 8388607 | End of PROCESSING reg. space
1800000 25165824 0 Beginning of PROC SRAM space
1800001 25165825 1

1800002 25165826 2

1BFFFFE 29360126 4194302

1BFFFFF 29360127 4194303 | End of PROC SRAM space

.. Unaddressable space

2000000 33554432 0 Beginning of OPTIN 0 reg. space
2000001 33554433 1

2000002 33554434 2

20000FE 33554686 254

20000FF 33554687 255 End of OPTIN 0 reg. space

. Unaddressable space

3000000 50331648 0 Beginning of OPTIN 1 reg. space
3000001 50331649 1

3000002 50331650 2

30000FE 50331902 254

30000FF 50331903 255 End of OPTIN 1 reg. space

.. Unaddressable space

4000000 67108864 0 Beginning of OPTIN 2 reg. space
4000001 67108865 1

4000002 67108866 2

40000FE 67109118 254

40000FF 67109119 255 End of OPTIN 2 reg. space

Unaddressable space

Address [hex| | Address [dec] | Rel. pos.

5000000 Register space of OPTIN from 3 to 7

90000FF

e Unaddressable space

A000000 167772160 0 Beginning of OPTIN 8 reg. space

A000001 167772161 1

A000002 167772162 2

AO000FE 167772414 254

AQ000FF 167772415 255 End of OPTIN 8 reg. space

. Unaddressable space

B000000 184549376 0 Beginning of OPTIN 9 reg. space

B000001 184549377 1

B000002 184549378 2

BOOOOFE 184549630 254

BOOOOFF 184549631 255 End of OPTIN 9 reg. space
References

[1] ALICE Collaboration, ALICE Physics Performance Report, CERN-LHCC-
2003-049, J. Phys., G 30 (2004) 1517-1763.

[2] P. Riedler et al., Overview and status of the ALICE Silicon Pixel Detector,
Proceedings of the Pixel 2005 Conference, Bonn, Germany.

[3] A. Kluge, The ALICE silicon pixel detector front-end and read-out elec-
tronics, Nucl. Instr. and Meth. A 560 (2006) 67-70.

[4] J. Conrad et al., Minimum Bias Triggers in Proton-Proton Collisions with
the VZERO and Silicon Pixel Detectors, ALICE-INT-2005-025.

Table 2: Special Purpose Control registers access via the FECTRL and FES-
TRD commands. When the number of bits set/read is less than 19, they are
written/returned as less significant bits of the FECTRL/FESTW parameter

field.

FECTRL parameter field (19 bits)

000000000 00
000000000 01

control0[7:0]
control1[7:0]

control0[7:0] SP register, write value
control1[7:0] SP register, write value

111111111 1 rd-a[27:19] rd-a[27:19] SP register, write value
111111111 0 wr_a[27:19] wr_a[27:19] SP register, write value
111111100 len[1§] len[17:9] len[18:9] SP register, write value
111111101 1 len[8:0] len[8:0] SP register, write value
FESTRD parameter field | Replied FESTW par. field Description
111 1111 0000 0000 0000 len[18:0] Last requested read length
111 1110 0000 0000 0000 rd_len[18:0] Last actual read length
111 1110 1000 0000 0000 wr_len[18:0] Last actual write length
111 1111 1110 0000 0001 rd_a[27:19] Last (MSB) read base address
111 1111 1110 0000 0000 rd-a[18:0] Last (LSB) read base address
111 1111 1100 0000 0001 wr_a[27:19] Last (MSB) write base address
111 1111 1100 0000 0000 wr_a[18:0] Last (LSB) write base address

000 0000 0000 0000 1010
000 0000 0001 0000 1011
000 0000 0000 0000 0000
000 0000 0000 0000 0100

control0[7:0]

control1[7:0]

version[18:0]
bus_status[11:0]

User register
User register
Firmware version
Communication bus status

Fastor[639:0]

_|JTAG

Clk l
clk
clk out clk aux in

o0 9o
== =

Figure 1: Block diagram of the Alice Pixel Trigger processing board

10

Figure 2: Communication lines between the various devices of the PIT system.

23
fbD<31..0> RAM_ADDR .
siu < > CONTROL . CZEE*WOL
RAM_DATA |« >
5 A, A&
N S o
o~ d o
M o v
¢ g |
o o |
address<27..0> \ & < 3
data<31..0> \/
rw_cntl<19..0> Y
5 5 12 .
N = 2 = 1e |4
Y 0 v 3 = Z
g £ g a v =
4 ko S, %) g 5‘
E v e V‘é . £
2
RAM_ADD -
- PROC
PROCESSING o SRAM
RAM_DATA| >
OPTIN cards
(x10)

11

